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Summary. In this theoretical work, we consider the geometrical, electronic and
energetic properties of some lithium and beryllium derivatives. The standard heats
of formation of these compounds have been calculated at the MP4 = SDTQ/6-
31 + G(24df, p)//MP2 = FULL/6-31G(d, p) level. The values obtained at this level
of the theory are also compared with the heats of formation deduced from a
composite procedure in which it is assumed that some corrections can be treated
separately and combined in an additive manner. We find that the values
determined with the complete 6-31 + G(2df, p) basis set are the more accurate.
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1. Introduction

Theoretical thermochemistry is now able to predict fairly accurate heats of
formation for a wide range of small chemical compounds. Using large basis sets
and including much of the correlation effect, the enthalpies of formation can be
estimated to +2 kcal/mol accuracy [1-3). Strategies have been developed by
Pople and his group [1, 4, 5]. Many papers on boron chemistry [6] published in
the last decade reexamined the binding energy in diborane and the related
standard heats of formation (4H,) of monoborane and diborane (7]. Such data
are essential for evaluating thermochemical properties of larger boron derivatives
and for fundamental comparisons between carbon and boron chemistry. The
systematic study of small lithium and beryllium compounds was pioneered in 1977
by Dill et al. [8], based on HF/6-31G*//HF/STO-3G calculations. More recently,
further work on lithium and beryllium derivatives has been published [9-14].
These papers describe the geometries and the electronic properties of these species,
but only a few deal with accurate evaluation of the energy content. In this study,
we attempt to obtain heats of formation for LiXH, and BeXH,, compounds where
X stands for one of the second-row atoms (Li, Be, B, C, N, O or F). We do not
consider the known bridged structures [11-13]. All these results will be used later
as the basic data for evaluating 4H, of larger Li or Be containing compounds and
for establishing bond energies and stabilization energies in lithium and beryllium
derivatives.
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2. Theoretical methods

The theoretical methods used in this work are similar to those described previously
[1, 15, 16]. We employ the spin-restricted Hartree—Fock (RHF) theory for
closed-shell molecules and the unrestricted form of this theory (UHF) for
open-shell systems. The equilibrium structures and the harmonic frequencies were
first obtained with the 6-31G(d, p) basis set (or in the usual notation: HF/6-
31G**//HF/6-31G**). SCF frequencies are overestimates [17-19], and so the
theoretical frequencies have been rescaled (in particular, to compute the thermal
corrections between 0 K, 0 vibration and 298.15 K). Beyond the Hartree—Fock
level, we use Mgller—Plesset perturbation theory for the correlation corrections.
Fully optimized structures were obtained at full second order (MP2/6-31G**//
MP2/6-31G**). More accurate energies were then obtained as single-point
calculations at full fourth order (MP4sdtg, i.e. including single, double, triple and
quadruple replacements). We employ the 6-31 + G(2df, p) basis set for the MP4
calculations. We also compare such MP4/6-31 + G(2df, p)//
MP2/6-31G** energies with those available from Pople’s procedure [20]. This
assumes additivity of incremental effects beyond the 6-31G(d, p) level:

E[6-31 + G(2df, p)] ~ E(combined) = E[6-31 + G(d, p)] + E[6-31G(2d, p)]
+ E[6-31G(df, p)] — 2E[6-31G(d, p)]. )

3. Results and discussion
3.1. The geometries

Optimized structures are given in Table 1, together with experimental data [21]
and the theoretical STO-3G geometries of Dill et al. [8]. Other theoretical
results are also available [14]. The HF/6-31G** and the MP2/6-31G** geomet-
rical parameters are nearly the same. The average difference between these two
sets of results is less than 0.001 A for the distances and 0.15° for the angles,
while the corresponding standard deviations are 0.02 A and 0.94°. Discrepan-
cies between HF/STO-3G [8] and MP2/6-31G** values are much larger, how-
ever, with standard deviations (average differences) of 0.06 A (0.04 A) for the
distances and 1.48° (0.60°) for the angles. Hence the effect of basis set on the
geometrical parameters is important, but the correlation effect is insignificant.
Moreover, polarization functions (at least d functions on the heavy atoms) are
needed to obtain correct curvature of the potential energy surface at the
stationary point. For example, at the SCF level, HBeOH has a C_, symmetry
with STO-3G or 3-21G basis sets [8,22] and is bent with 6-31G* [22] or
6-31G** basis sets (see Table 1). Nevertheless, HF/6-31G** energies for both
linear and bent structures of HBeOH remain close to each other: the C_,
structure is a second order transition point (Ts2), only 0.51 kcal/mol higher in
energy than the C; equilibrium geometry. Beyond the Hartree—Fock level, the
energy difference increases to reach 13.77 kcal/mol at the MP4sdtq/combined-
basis-set level. Such behavior is already known for the boron derivatives [23].
We now consider the distances between the heavy atoms. It is interesting to
compare covalent radii (r,,, [24,25]) with half the homonuclear single bond
lengths as obtained at the MP2/6-31G** level (d/2) in H, X -XH, compounds.
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The latter are available from Table 1 for X =Li and Be and from previously
reported results, for X =B [16]:

Li d2=139A r,,=134A[24 r,,=134A][25]
Be d2=105A r,, =125 Fooo =0.91 A
B d2=083A r,_,=09A Four =0.82 A
C dpR2=076A r,,=077A ro =0.77 A
N dR2=072A r,=075A Foop =0.74 A
O dp2=073A r,=073A Foow =0.70 A
F d2=071A r,,=072A T = 0.68 A

d/2 and r,, correlate with regression coefficients larger than 0.95 (d/2=
0.04 + 0.99r,,, for Huheey’s data and 4/2= —0.04 + 1.08r,,, for Sanderson’s
data). This comparison also suggests that the covalent radii for Be and B could
be close to 1 A and 0.8 A respectively as reported by Sanderson [25].

We now turn to the other bond lengths of Table 1. Normal two-electron
single bonds are expected to have lengths close to the sum of the covalent radii.
The previously reported values show that Li—Be bond length in LiBeH (2.429 A)
compares nicely with the sum D = d(Be)/2 + d(Li)/2 = 2.44 A. This matches the
Boy’s picture [26], with one centroid of charge in the Be-Li region. The same
conclusion can be obtained for Li-BH, (D = 2.22 A), HLi-NH, (D =2.14 A),
HBe-BH, (D =1.88 A) and H,Be-NH, (D =1.80 A). However, the “single”
bonds Li—C in Li—~CH, (2.00 A from Table 1 versus D =2.15 A) and Be-C in
HBe-CH, (1.69 A from Table 1 versus D =1.81 A) show relatively shorter
lengths than expected for covalent two-electron bonds. This shortening is usually
explained by the ionic character of these bonds (see [27-29] for the C—Li bond).

3.2. Statistical thermodynamics

The classical formalism of statistical thermodynamics allows us to obtain ther-
mal corrections

T

H°(T) — H°(0,0) = ZPE + f C,dT,

0K
standard entropies and heat capacities; ZPE is the zero point energy. The
vibrational frequencies have been calculated at the HF/6-31G**//HF/6-31G**
level. These quantities are known to be overestimated by approximately ten
percent [17—19]. Then, one uses the following scaling procedure to correct the
theoretical frequencies [18]:

v(exp) = v(scaled) = —45.99 + 0.92227v(th). (2)

The results are listed in Table 2, together with some experimental values from
[21]. One generally observes a satisfactory agreement between theoretical and
experimental quantities.

3.3. The electronic energies
Table 3 gives total energies both at the MP4/combined-basis-set (relation 1) and

MP4/6-31 + G(2df, p) levels. For many compounds (especially the molecules
involving the lightest atoms), the additivity assumption beyond the 6-31G(d, p)
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Table 2. Thermal corrections (H(T) — H(0 K, 0 vibration)), standard entropies and heat capacitites
at the harmonic level, assuming scaled theoretical frequencies

Compounds H°(298.15) — H°(0,0) S5°(298.15) C,(298.15)
keal/mol cal/K mol cal/K mol
LiH th 3.89 40.89 7.12
exp 4.09 40.85 7.11
LiLi th 2.75 47.67 8.69
exp 2.81 47.08 8.63
LiBeH th 6.97 51.31 11.53
LiBH, th 13.22 54.72 12.09
CH,Li th 22.70 54.37 12.42
NH,Li th 16.90 55.47 11.90
HLiNH, th 28.65 62.59 16.75
LiOH th 10.34 51.64 11.06
[exp] 9.78 50.35 11.03
LiF th 3.40 47.82 7.45
exp 3.42 47.87 7.48
BeLi, th 472 59.39 14.07
BHLi, th 9.51 64.42 15.91
CH,Li, th 16.69 66.20 17.30
NHLi, th 11.35 61.61 14.65
OLi, th 5.85 57.14 12.00
[exp] 5.88 54.76 11.89
HBe th 483 42.20 6.97
Exp 5.01 42.26 6.98
HBeH th 9.81 42.00 8.80
[exp] 11.37 41.37 7.26
HBeBeH th 11.74 5145 13.66
BeBH(®X ) th 9.78 50.25 8.41
HBeBH, th 18.46 56.12 13.81
BeCH,(14,) th 15.82 55.33 11.44
BeCH,(B,) th 15.85 55.33 10.96
BeCH, th 23.48 53.40 11.40
HBeCH, th 28.17 55.59 13.80
BeNH(!X ") th 11.41 48.36 9.18
BeNH(IT) th 9.63 50.67 8.52
HBeNH, th 22.30 55.43 13.56
H,BeNH,* th 34.79 64.51 15.60
BeO(1Z+) th 4.31 47.08 7.02
Exp 4.20 47.23 7.05
BeO(CI) th 3.58 49.80 7.29
HBeOH th 14.96 54.86 12.36
H,BeOH,* th 26.76 64.54 15.73
HBeF th 8.30 49.99 9.78

Experimental values are taken from the JANAF thermochemical tables [21]
Brackets mean uncertain reported experimental values
“Free rotation assumed around the central bond
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level gives accurate results. The standard deviation of the difference between the
two sets of energies in only of 2.9 kcal/mol. Nevertheless, the combined energies
are usually lower than the exact energies (the average difference is —1.7 kcal/
mol) and discrepancies in the range of 4-13kcal/mol are observed
(HBeNH,, BeO, NH,Li, LiF: 4 kcal/mol; LiOH: 5 kcal/mol; OLi,: 7 kcal/mol;
BHLi,: 13 kcal/mol). It appears that most of the problems concern lithium
containing molecules; trouble with this element has already been pointed out
elsewhere [31].

3.4. The enthalpies of formation

Using the so-called ““isogyric reactions™ [1] reported in Table 3, one can deduce
thermochemical quantities according to the following procedure:

XYH, +mH->X + Y +3m+nH,
AH/(XYH,) = AH,(X) + AH,(Y) —m AH,(H) — 4H,
if AH, ={Ex+ Ey + 5 + m)Ey; — Exyy, —mEy}
+{TCy + TCy + 3(n + MTCy, — TCxyy, —mTCy}, (3)

where TC stand for the thermal corrections reported in Table 2 as
[H°(298.15K) — H°(0,0)] and E are the MP4 energies from Table 3. Some
additional reference data are listed in [32].

The enthalpies of formation so obtained are given in Table 3. The isogyric
procedure does not cancel the errors of the combined energies. It is seen that the
AH; calculated using the combined energies may be quite different from those
obtained using the exact energies (the difference can reach 13 kcal/mol). On the
other hand, the heats of formation calculated with the MP4/6-31 + G(2df, p)
energies reproduce most of the experimental data quite well. The correlation
between the two sets of values is shown in Fig. 1.

100} AHf(Exp) = 0,568 + 0,983 AHi(Th.)
= ] BeH
»® 4 Li2
w50 A CH2NH2
e BcO
e
4 NHINH2 A pgi
0 - CH3NH2
] CH4 ~F NH20H
NH3
] OLi2
_50.: CH3F TioH
] H20
E
1 LiF
'100 L L4 L l N B L L ] L v LA ‘ L L4 LA T ]
-100 -50 0 50 100

AHI[6-31+G(2df, p)]

Fig. 1. Correlation between experimental and theoretical heats of formation (kcal/mol)
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Recently Pople et al. have recommended that G1-theory [33] be employed for
achieving a general accuracy of +2 kcal/mol. As shown below, this approach is
similar to the strategy used in this work:

In Gl-theory This work
Geometry:  MP2 =FULL/6-31G* MP2 = FULL/6-31G**
Energies: MP4/6-311G(24df, p) MP4 = SDTQ/6-31 + G(2df, p)
+ correction for diffuse diffuse function already
function included
+ correction beyond not included
the MP4 level
Temperature: ZPE only Complete correction
with scaled HF/6-31G* H°(T) — H°(0,0)
frequencies with scaled HF/6-31G**
frequencies
other: AE(higher level correction) cancel in isogyric approach

The two procedures should give results of the same quality.

Let us now consider independently some of the heats of formation given in
Table 3. For BeH,, the value reported in the JANAF Tables (30 kcal/mol) is
only a rough value; so, in accordance with Pople, we prefer the theoretical
prediction [1]. The values calculated for BeH, BeO('X *), LiOH, LiF and OLi,
always fall within the experimental uncertainty domain. In view of the large
experimental error for BeH ( +6.7 kcal/mol), we feel that the theoretical value is
more reliable. For LiH and Li,, theoretical values are slightly underestimated
with respect to the experimental values. Extensive theoretical literature exists for
methyllithium. The theoretical C—Li bond strength calculated by Ahlrichs et al.
[29] gives an enthalpy of formation of 26.7 kcal/mol. Schleyer et al. [28] report
26.9 kcal/mol. The experimental measurement of the heat of sublimation and of
dissociation (methyllithium is tetrameric in the gas phase) has not been reported,
and so comparison with experimental values is not feasible for monomeric
methyllithium. Nevertheless, all the theoretical results suggest that
AH ;. 4iss(CH;3Li) should be larger than 40 kcal/mol [34]. The studies in [28, 35]
show the tetramerization energy of methyllithium to be very large. Hence, we
omit the following compounds in the comparison between theory and experi-
ment: LiCH;, BeH, and BeH. Under this assumption, the regression showed in
Fig. 1 becomes

AH;(Exp) = 0.893 + 0.996 4H,(6-31 + G**2df) (with R?=0.998)
the average error is 0.53 kcal/mol and the standard deviation 1.25 kcal/mol.

The corresponding regression for the heats of formation deduced from the
combined energy gives:

AH/(Exp) = 3.937 + 0.977 AH,(combined) (with R*=0.997)
the average error is 4.17 kcal/mol and the standard deviation 3.04 kcal/mol.

The theoretical results are underestimated compared with the corresponding
experimental values and the approach based on the exact energies seems to be
slightly more accurate than that based on the combined energies.

Finally, we briefly comment on some beryllium derivatives. Pople et al. (8]
have mentioned a *IT electronic state for BeBH below the 3X~ state. We also
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obtain a 3IT state [36], but it is found 15.2 kcal/mol higher in energy than the
previous 3 ~ (Table 3). BeCH, has also a triplet state (*B,) lower in energy than
the ' 4, state; the energy difference is of the order of 12 kcal/mol (or 7.5 kcal/mol,
based on 4H,(0K)). For the beryllium imide (BeNH), the '+ state character-
ized by four n electrons is found to be 9.1 kcal/mol (11.4 kcal/mol on the
AH(0K)) below the *I1. Our conclusion differs from that of Pople et al. [8].
But, as already pointed out by these authors for beryllium oxide, small basis sets
incorrectly predict the ground state to be 3II, presumably due to the lack of
correlation corrections. The !X * state of BeQO is known experimentally to be the
lowest singlet state. On the basis of theoretical considerations Schaefer et al. [37]
reached the same conclusion. Our singlet species is 24.5 kcal/mol below the IT
state (27.8 kcal/mol on the AH (0K)). The JANAF Tables [21] report a
difference of 22.9 kcal/mol between these two states.

Conclusions

In this work we have calculated the heats of formation of some compounds
containing lithium and beryllium atoms. We show that very large basis sets and
electron correlation both are important to obtain accurate geometries and
thermochemical properties.
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